d02 - Ordinary Differential Equations d02pxc

nag_ode_ivp_rk_interp (d02pxc)

1. Purpose

nag_ode_ivp_rk_interp (d02pxc) is a function to compute the solution of a system of
ordinary differential equations using interpolation anywhere on an integration step taken by
nag-ode_ivp_rk_onestep (d02pdc).

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_interp(Integer neq, double twant, Nag_SolDeriv request, Integer
nwant,
double ywant[], double ypwant[],
void (*f) (Integer neq, double t, double y[], double ypl],
Nag_User *comm),
Nag_ODE_RK *opt, Nag_User *comm, NagError *fail)

3. Description

This function and its associated functions (nag-ode_ivp_rk_setup (d02pvc), nag_ode_ivp_rk_onestep
(d02pdc), nag-ode_ivp_rk reset_tend (d02pwc), nag-ode_ivp_rk_errass (d02pzc)) solve the initial
value problem for a first order system of ordinary differential equations. The functions, based
on Runge-Kutta methods and derived from RKSUITE (Brankin et al, 1991) integrate

Yy =fty) given y(t,) =1y,

where y is the vector of neq solution components and t is the independent variable.

nag-ode_ivp_rk_onestep (d02pdc) computes the solution at the end of an integration step. Using the
information computed on that step nag_ode_ivp_rk_interp computes the solution by interpolation
at any point on that step. It cannot be used if method = Nag_RK_7_8 was specified in the call to
set-up function nag ode_ivp_rk_setup (d02pvc).

4. Parameters

neq
Input: the number of ordinary differential equations in the system.
Constraint: neq > 1.

twant
Input: the value of the independent variable, ¢, where a solution is desired.

request
Input: determines whether the solution and/or its first derivative are computed as follows:
request = Nag_Sol - compute approximate solution only
request = Nag_Der - compute approximate first derivative of the solution only
request = Nag_SolDer - compute both approximate solution and first derivative.
Constraint: request = Nag_Sol or Nag_Der or Nag_SolDer.

nwant
Input: the number of components of the solution to be computed. The first nwant components
are evaluated.
Constraint: 1 < nwant < neq.

ywant[nwant]
Output: an approximation to the first nwant components of the solution at twant when
specified by request.

[NP3275/5/pdf] 3.d02pxc. 1

nag_ode_ivp_rk_interp NAG C Library Manual

ypwant[nwant]
Output: an approximation to the first nwant components of the first derivative of the solution
at twant when specified by request.

This function must evaluate the functions f; (that is the first derivatives y;) for given values
of the arguments ¢, y,. It must be the same procedure as supplied to nag_ode_ivp_rk_onestep
(d02pdc).

void f (Integer neq, double t, double y[], double yp[], Nag_User *comm)

neq
Input: the number of differential equations.

Input: the current value of the independent variable, t.

¥[neq]
Input: the current values of the dependent variables, y; for ¢ =1,2,...,neq.

yp[neq]
Output: the values of f, for i =1,2,... neq.

comm
Input/Output: pointer to a structure of type Nag User with the following
member:

p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

opt
Input: the structure of type Nag_ ODE_RK as output from nag_ode_ivp_rk_onestep (d02pdc).
This structure must not be changed by the user.
Output: some members of opt are changed internally.

comm
Input/Output: pointer to a structure of type Nag_User with the following member:

p - Pointer
Input/Output: the pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function f(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_PREV_CALL
The previous call to a function had resulted in a severe error. You must call
nag-ode_ivp_rk_setup (d02pvc) to start another problem.

NE_RK_INVALID CALL
The function to be called as specified in the setup function nag_ode_ivp_rk_setup (d02pvc) was
nag-ode_ivp_rk_range (d02pcc). However the actual call was made to nag-ode_ivp_rk_interp.
This is not permitted.

NE_MISSING_CALL
Previous call to nag_ode_ivp_rk_onestep (d02pdc) has not been made, hence nag_ode_ivp_rk_interp
must not be called.

3.d02pxc.2 [NP3275/5/pdf]

d02 - Ordinary Differential Equations d02pxc

6.1.

6.2.

NE_PREV_CALL_INI
The previous call to the function nag_ode_ivp_rk_onestep (d02pdc) resulted in a severe error.
You must call nag_ode_ivp_rk_setup (d02pvc) to start another problem.

NE_NEQ
The value of neq supplied is not the same as that given to the setup function
nag-ode_ivp_rk_setup (d02pvc). neq = (value) but the value given to nag-ode_ivp_rk_setup
(d02pvc) was (value).

NE_BAD PARAM
On entry parameter request had an illegal value.

NE_2 INT_ARG_GT
On entry nwant = (value) while neq = (value). These parameters must satisfy neq < nwant.

NE_INT_ARG_LT
On entry, nwant must not be less than 1: nwant = (value).

NE_ALLOC_FAIL
Memory allocation failed.

NE_RK_PX_METHOD
Interpolation is not available with method = Nag RK_7.8. Either use method =
Nag_ RK_ 2.3 or Nag RK_ 4.5 for which interpolation is available. Alternatively use
nag-ode_ivp_rk_reset_tend (d02pwc) to make nag-ode_ivp_rk_onestep (d02pdc) step exactly
to the points where you want output.

NE_MEMORY _FREED
Internally allocated memory has been freed by a call to nag_ode_ivp_rk_free (d02ppc) without
a subsequent call to the set up function nag_ode_ivp_rk_setup (d02pvc).

Further Comments

None.

Accuracy

The computed values will be of a similar accuracy to that computed by nag_ode_ivp_rk_onestep
(d02pdc).

References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: a suite of Runge-Kutta codes for

the initial value problem for ODFEs SoftReport 91-S1, Department of Mathematics, Southern
Methodist University, Dallas, TX 75275, U.S.A.

See Also

nag-ode_ivp_rk_onestep (d02pdc)
nag-ode_ivp_rk_setup (d02pvc)
nag-ode_ivp_rk reset_tend (d02pwc)
nag-ode_ivp_rk_errass (d02pzc)

Example

We solve the equation

y'=-y, y(0)=0y(0)=1
reposed as

V=Y Y=Y

over the range [0, 27] with initial conditions y; = 0.0 and y, = 1.0. We use relative error control
with threshold values of 1.0e—8 for each solution component. nag_ode_ivp_rk_onestep (d02pdc) is
used to integrate the problem one step at a time and nag-ode_ivp_rk_interp is used to compute
the first component of the solution and its derivative at intervals of length 7/8 across the range
whenever these points lie in one of those integration steps. We use a moderate order Runge-Kutta
method (method = Nag RK_4.5) with tolerances tol = 1.0e—3 and tol = 1.0e—4 in turn so that
we may compare the solutions. The value of 7 is obtained by using X01AAC.

[NP3275/5/pdf] 3.d02pxc.3

nag_ode_ivp_rk_interp

8.1. Program Text

/* nag_ode_ivp_rk_interp(d02pxc) Example Program
Copyright 1994 Numerical Algorithms Group.

Mark 3, 1994.

* X ¥ X ¥

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef NAG_PROTO

NAG C Library Manual

static void f(Integer neq, double t1, double y[], double yp[], Nag_User *comm);

#else
static void f();
#endif

#define NEQ 2
#define NWANT 1
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define FOUR 4.0

main()

{
Integer neq, nwant;
double hstart, pi, tnow, tend, tol, tstart, tinc, twant;
Integer i, j, nout;

double thres[NEQ], ynow[NEQ], ypnow[NEQ], ystart[NEQ], ywant [NWANT];

double ypwant [NWANT] ;
Nag_RK_method method;
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_User comm;

Vprintf ("d02pxc Example Program Results\n");

/* Set initial conditions and input for d02pvc */
neq = NEQ;
method = Nag RK_4_5;
pi = XO01AAC;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;
for (i=0; i<neq; i++)
thres[i] = 1.0e-8;
errass = Nag_ErrorAssess_off;
hstart = ZERO;

/*
* Set control for output
*/

nwant = NWANT;

nout = 16;

tinc = tend/nout;

for (i=1; i<=2; i++)
{

if (i==1) tol = 1.0e-3;
if (i==2) tol = 1.0e-4;
d02pvc(neq, tstart, ystart, tend, tol, thres, method,

Nag_RK_onestep, errass, hstart, &opt, NAGERR_DEFAULT);

3.d02pxc.4

[NP3275/5/pdf]

d02 — Ordinary Differential Equations

8.2.

8.3.

[NP3275/5/pdf]

Vprintf ("\nCalculation with tol = ¥%8.1le\n\n",tol);

Vprintf (" t yi y2\n\n") ;

Vprintf ("%8.3f %8.4f %8.4f\n", tstart, ystart([0], ystart[1]);
j = nout - 1;

twant = tend - j*tinc;

do

{
d02pdc(neq, f, &tnow, ynow, ypnow, &opt, &comm, NAGERR_DEFAULT);
while (twant<=tnow)

{
d02pxc(neq, twant, Nag_SolDer, nwant, ywant, ypwant, f,
&opt, &comm, NAGERR_DEFAULT);
Vprintf ("%8.3f %8 .4f %8.4f\n", twant, ywant[O],
ypwant [0]) ;
j=3- 1
twant = tend - j*tinc;
}

} while (tnow<tend);

Vprintf ("\nCost of the integration in evaluations of f is %ld\n\n",
opt.totfcn);
d02ppc (&opt) ;

exit (EXIT_SUCCESS);
}
#ifdef NAG_PROTO
static void f(Integer neq, double t, double y[], double yp[], Nag_User *comm)
#else
static void f(neq, t, y, yp, comm)
Integer neq;
double t;
double y[1, ypll;
Nag_User *comm;

#endif
{

ypl0] = y[1];
) ypl[1]l = -y[0];

Program Data
None.

Program Results

dO2pxc Example Program Results

Calculation with tol = 1.0e-03

t yi y2
0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3826
1.571 1.0000 -0.0001
1.963 0.9238 -0.3828
2.356 0.7070 -0.7073
2.749 0.3825 -0.9240
3.142 -0.0002 -0.9999
3.534 -0.3829 -0.9238
3.927 -0.7072 -0.7069
4.320 -0.9239 -0.3823
4.712 -0.9999 0.0004
5.105 -0.9236 0.3830
5.498 -0.7068 0.7073
5.890 -0.3823 0.9239
6.283 0.0004 0.9998

d02pxc

3.d02pxc.5

nag_ode_ivp_rk_interp NAG C Library Manual

Cost of the integration in evaluations of f is 68

Calculation with tol = 1.0e-04

t yi y2
0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3827
1.571 1.0000 0.0000
1.963 0.9239 -0.3827
2.356 0.7071 -0.7071
2.749 0.3827 -0.9239
3.142 0.0000 -1.0000
3.534 -0.3827 -0.9239
3.927 -0.7071 -0.7071
4.320 -0.9239 -0.3827
4.712 -1.0000 0.0000
5.105 -0.9238 0.3827
5.498 -0.7071 0.7071
5.890 -0.3826 0.9239
6.283 0.0000 1.0000

Cost of the integration in evaluations of f is 105

3.d02pxc.6 [NP3275/5/pdf]

